Semisimple group codes and dihedral codes

We consider codes that are given as two-sided ideals in a semisimple finite group algebra \({\mathbb F}_q G\)  defined by idempotents constructed from subgroups of \(G\) in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Dutra, Flaviana S., Ferraz, Raul A., Milies, C. Polcino
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/785
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:We consider codes that are given as two-sided ideals in a semisimple finite group algebra \({\mathbb F}_q G\)  defined by idempotents constructed from subgroups of \(G\) in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals of \({\mathbb F}_q G\) in the case  when \(G\) is a dihedral group and extend these results also to a family of quaternion group codes. In the final section, we give a method of decoding; i.e., of finding and correcting eventual transmission errors.