Semisimple group codes and dihedral codes

We consider codes that are given as two-sided ideals in a semisimple finite group algebra \({\mathbb F}_q G\)  defined by idempotents constructed from subgroups of \(G\) in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Dutra, Flaviana S., Ferraz, Raul A., Milies, C. Polcino
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/785
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-785
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-7852018-04-04T08:43:10Z Semisimple group codes and dihedral codes Dutra, Flaviana S. Ferraz, Raul A. Milies, C. Polcino group code, minimal code, group algebra, idempotent, dihedral group, quaternion group 94B15, 94B60, 16S34, 20C05 We consider codes that are given as two-sided ideals in a semisimple finite group algebra \({\mathbb F}_q G\)  defined by idempotents constructed from subgroups of \(G\) in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals of \({\mathbb F}_q G\) in the case  when \(G\) is a dihedral group and extend these results also to a family of quaternion group codes. In the final section, we give a method of decoding; i.e., of finding and correcting eventual transmission errors. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/785 Algebra and Discrete Mathematics; Vol 8, No 3 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/785/315 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic group code
minimal code
group algebra
idempotent
dihedral group
quaternion group
94B15
94B60
16S34
20C05
spellingShingle group code
minimal code
group algebra
idempotent
dihedral group
quaternion group
94B15
94B60
16S34
20C05
Dutra, Flaviana S.
Ferraz, Raul A.
Milies, C. Polcino
Semisimple group codes and dihedral codes
topic_facet group code
minimal code
group algebra
idempotent
dihedral group
quaternion group
94B15
94B60
16S34
20C05
format Article
author Dutra, Flaviana S.
Ferraz, Raul A.
Milies, C. Polcino
author_facet Dutra, Flaviana S.
Ferraz, Raul A.
Milies, C. Polcino
author_sort Dutra, Flaviana S.
title Semisimple group codes and dihedral codes
title_short Semisimple group codes and dihedral codes
title_full Semisimple group codes and dihedral codes
title_fullStr Semisimple group codes and dihedral codes
title_full_unstemmed Semisimple group codes and dihedral codes
title_sort semisimple group codes and dihedral codes
description We consider codes that are given as two-sided ideals in a semisimple finite group algebra \({\mathbb F}_q G\)  defined by idempotents constructed from subgroups of \(G\) in a natural way and compute their dimensions and weights. We give a criterion to decide when these ideals are all the minimal two-sided ideals of \({\mathbb F}_q G\) in the case  when \(G\) is a dihedral group and extend these results also to a family of quaternion group codes. In the final section, we give a method of decoding; i.e., of finding and correcting eventual transmission errors.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/785
work_keys_str_mv AT dutraflavianas semisimplegroupcodesanddihedralcodes
AT ferrazraula semisimplegroupcodesanddihedralcodes
AT miliescpolcino semisimplegroupcodesanddihedralcodes
first_indexed 2024-04-12T06:26:36Z
last_indexed 2024-04-12T06:26:36Z
_version_ 1796109222907215872