A note on semidirect products and nonabelian tensor products of groups

Let \(G\) and \(H\) be groups which act compatibly on one another. In [2] and [8] it is considered a group construction \(\eta(G,H)\) which is related to the nonabelian tensor product \(G \otimes H\). In this note we study embedding questions of certain semidirect products \(A \rtimes H\) into \(\et...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Nakaoka, Irene N., Rocco, Noraı R.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/789
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:Let \(G\) and \(H\) be groups which act compatibly on one another. In [2] and [8] it is considered a group construction \(\eta(G,H)\) which is related to the nonabelian tensor product \(G \otimes H\). In this note we study embedding questions of certain semidirect products \(A \rtimes H\) into \(\eta(A, H)\), for finite abelian \(H\)-groups \(A\). As a consequence of our results we obtain that complete Frobenius groups and affine  groups over finite fields are embedded into \(\eta(A, H)\) for convenient groups \(A\) and \(H\). Further, on considering finite metabelian groups \(G\) in which the derived subgroup has order coprime with its index we establish the order of the nonabelian tensor square of \(G\).