A note on semidirect products and nonabelian tensor products of groups
Let \(G\) and \(H\) be groups which act compatibly on one another. In [2] and [8] it is considered a group construction \(\eta(G,H)\) which is related to the nonabelian tensor product \(G \otimes H\). In this note we study embedding questions of certain semidirect products \(A \rtimes H\) into \(\et...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | Nakaoka, Irene N., Rocco, Noraı R. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/789 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Classical groups as Frobenius complement
von: Darefsheh, M., et al.
Veröffentlicht: (2023) -
A note on semidirect products and nonabelian tensor products of groups
von: Nakaoka, I.N., et al.
Veröffentlicht: (2009) -
A geometrical interpretation of infinite wreath powers
von: Mikaelian, Vahagn H.
Veröffentlicht: (2018) -
Camina groups with few conjugacy classes
von: Cangelmi, Leonardo, et al.
Veröffentlicht: (2018) -
Fully invariant subgroups of an infinitely iterated wreath product
von: Leshchenko, Yuriy Yu.
Veröffentlicht: (2018)