Some properties of nilpotent groups
Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed propert...
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/797 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | Property S, a finiteness property which can hold in infinite groups, was introduced by Stallings and others and shown to hold in free groups. In [2] it was shown to hold in nilpotent groups as a consequence of a technical result of Mal'cev. In that paper this technical result was dubbed property R. Hence, more generally, any property R group satisfies property S. In [7] it was shown that property R implies the following (labeled there weak property R) for a group G:If \(G_{0}\) is any subgroup in \(G\) and \(G_{0}^{\ast}\) is any homomorphic image of \(G_{0}\), then the set of torsion elements in \(G_{0}^{\ast}\) forms a locally finite subgroup.It was left as an open question in [7] whether weak property R is equivalent to property R. In this paper we give an explicit counterexample thereby proving that weak property R is strictly weaker than property R. |
|---|