Characterization of regular convolutions
A convolution is a mapping \(\mathcal{C}\) of the set \(Z^{+}\) of positive integers into the set \({\mathscr{P}}(Z^{+})\) of all subsets of \(Z^{+}\) such that, for any \(n\in Z^{+}\), each member of \(\mathcal{C}(n)\) is a divisor of \(n\). If \(\mathcal{D}(n)\) is the set of all divisors of \(n\)...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | Sagi, Sankar |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/80 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsСхожі ресурси
-
Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
за авторством: Sagi, Sankar
Опубліковано: (2018) -
Ideals in \((\mathcal{Z}^{+},\leq_{D})\)
за авторством: Sagi, Sankar
Опубліковано: (2018) -
Recursive method for constructing linear convolution algorithms of various lengths using hypercomplex number systems.
за авторством: Kalinovsky, Ya. A., та інші
Опубліковано: (2019) -
Groups whose lattices of normal subgroups are factorial
за авторством: Rajhi, A.
Опубліковано: (2021) -
Characterization of regular convolutions
за авторством: Sagi S.
Опубліковано: (2018)