Groups with small cocentralizers

Let \(G\) be a group. If \(S\subseteq G\) is a \(G\)-invariant subset of \(G\), the factor-group \(G/C_G(S)\) is called the cocentralizer of \(S\) in \(G\). In this survey-paper we review some results dealing with the influence of several cocentralizers on the structure of the group, a direction of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Otal, Javier, Semko, Nikolaj N.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/801
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-801
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8012018-04-04T08:49:22Z Groups with small cocentralizers Otal, Javier Semko, Nikolaj N. Cocentralizer in a group. Groups with prescribed conjugacy classes: \(FC\)-groups. \(CC\)-groups. \(PC\)-groups. \(MC\)-groups 20F24, 20F17 Let \(G\) be a group. If \(S\subseteq G\) is a \(G\)-invariant subset of \(G\), the factor-group \(G/C_G(S)\) is called the cocentralizer of \(S\) in \(G\). In this survey-paper we review some results dealing with the influence of several cocentralizers on the structure of the group, a direction of research to which Leonid A. Kurdachenko was an active contributor, as well as many mathematicians all around the world. Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/801 Algebra and Discrete Mathematics; Vol 8, No 4 (2009) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/801/331 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T08:49:22Z
collection OJS
language English
topic Cocentralizer in a group. Groups with prescribed conjugacy classes: \(FC\)-groups. \(CC\)-groups. \(PC\)-groups. \(MC\)-groups
20F24
20F17
spellingShingle Cocentralizer in a group. Groups with prescribed conjugacy classes: \(FC\)-groups. \(CC\)-groups. \(PC\)-groups. \(MC\)-groups
20F24
20F17
Otal, Javier
Semko, Nikolaj N.
Groups with small cocentralizers
topic_facet Cocentralizer in a group. Groups with prescribed conjugacy classes: \(FC\)-groups. \(CC\)-groups. \(PC\)-groups. \(MC\)-groups
20F24
20F17
format Article
author Otal, Javier
Semko, Nikolaj N.
author_facet Otal, Javier
Semko, Nikolaj N.
author_sort Otal, Javier
title Groups with small cocentralizers
title_short Groups with small cocentralizers
title_full Groups with small cocentralizers
title_fullStr Groups with small cocentralizers
title_full_unstemmed Groups with small cocentralizers
title_sort groups with small cocentralizers
description Let \(G\) be a group. If \(S\subseteq G\) is a \(G\)-invariant subset of \(G\), the factor-group \(G/C_G(S)\) is called the cocentralizer of \(S\) in \(G\). In this survey-paper we review some results dealing with the influence of several cocentralizers on the structure of the group, a direction of research to which Leonid A. Kurdachenko was an active contributor, as well as many mathematicians all around the world.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/801
work_keys_str_mv AT otaljavier groupswithsmallcocentralizers
AT semkonikolajn groupswithsmallcocentralizers
first_indexed 2025-07-17T10:31:36Z
last_indexed 2025-07-17T10:31:36Z
_version_ 1837890139767963648