On classification of groups generated by \(3\)-state automata over a \(2\)-letter alphabet
We show that the class of groups generated by 3-state automata over a 2-letter alphabet has no more than 122 members. For each group in the class we provide some basic information, such as short relators, a few initial values of the growth function, a few initial values of the sizes of the quotients...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | Bondarenko, Ievgen, Grigorchuk, Rostislav, Kravchenko, Rostyslav, Muntyan, Yevgen, Nekrashevych, Volodymyr, Savchuk, Dmytro, Sunic, Zoran |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/805 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsСхожі ресурси
-
On a question of Wiegold and torsion images of Coxeter groups
за авторством: Grigorchuk, Rostislav
Опубліковано: (2018) -
Finite groups as groups of automata with no cycles with exit
за авторством: Russyev, Andriy
Опубліковано: (2018) -
On the finite state automorphism group of a rooted tree
за авторством: Lavrenyuk, Yaroslav
Опубліковано: (2018) -
On growth of generalized Grigorchuk's overgroups
за авторством: Samarakoon, S. T.
Опубліковано: (2020) -
A geometrical interpretation of infinite wreath powers
за авторством: Mikaelian, Vahagn H.
Опубліковано: (2018)