On classification of groups generated by \(3\)-state automata over a \(2\)-letter alphabet
We show that the class of groups generated by 3-state automata over a 2-letter alphabet has no more than 122 members. For each group in the class we provide some basic information, such as short relators, a few initial values of the growth function, a few initial values of the sizes of the quotients...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | Bondarenko, Ievgen, Grigorchuk, Rostislav, Kravchenko, Rostyslav, Muntyan, Yevgen, Nekrashevych, Volodymyr, Savchuk, Dmytro, Sunic, Zoran |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/805 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On a question of Wiegold and torsion images of Coxeter groups
von: Grigorchuk, Rostislav
Veröffentlicht: (2018) -
Finite groups as groups of automata with no cycles with exit
von: Russyev, Andriy
Veröffentlicht: (2018) -
On the finite state automorphism group of a rooted tree
von: Lavrenyuk, Yaroslav
Veröffentlicht: (2018) -
On growth of generalized Grigorchuk's overgroups
von: Samarakoon, S. T.
Veröffentlicht: (2020) -
A geometrical interpretation of infinite wreath powers
von: Mikaelian, Vahagn H.
Veröffentlicht: (2018)