Random walks on finite groups converging after finite number of steps

Let \(P\) be a probability on a finite group \(G\), \(P^{(n)}=P \ast \ldots\ast P\) (\(n\) times) be an \(n\)-fold convolution of \(P\). If \(n \rightarrow \infty\), then under mild conditions \(P^{(n)}\) converges to the uniform probability \(U(g)=\frac 1{|G|}\) \((g\in G)\). We study the case when...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Vyshnevetskiy, A. L., Zhmud, E. M.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/814
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-814
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8142018-03-22T09:39:19Z Random walks on finite groups converging after finite number of steps Vyshnevetskiy, A. L. Zhmud, E. M. random walks on groups, finite groups, group algebra 20P05, 60B15 Let \(P\) be a probability on a finite group \(G\), \(P^{(n)}=P \ast \ldots\ast P\) (\(n\) times) be an \(n\)-fold convolution of \(P\). If \(n \rightarrow \infty\), then under mild conditions \(P^{(n)}\) converges to the uniform probability \(U(g)=\frac 1{|G|}\) \((g\in G)\). We study the case when the sequence \(P^{(n)}\) reaches its limit \(U\) after finite number of steps: \(P^{(k)}=P^{(k+1)}= \dots=U\) for some \(k\). Let \(\Omega(G)\) be a set of the probabilities satisfying to that condition. Obviously, \(U\in \Omega(G)\). We prove that \(\Omega(G)\neq U\) for ``almost all'' non-Abelian groups and describe the groups for which \(\Omega(G)=U\). If \(P\in \Omega(G)\), then \(P^{(b)}=U\), where \(b\) is the maximal degree of irreducible complex representations of the group \(G\). Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/814 Algebra and Discrete Mathematics; Vol 7, No 2 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/814/344 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic random walks on groups
finite groups
group algebra
20P05
60B15
spellingShingle random walks on groups
finite groups
group algebra
20P05
60B15
Vyshnevetskiy, A. L.
Zhmud, E. M.
Random walks on finite groups converging after finite number of steps
topic_facet random walks on groups
finite groups
group algebra
20P05
60B15
format Article
author Vyshnevetskiy, A. L.
Zhmud, E. M.
author_facet Vyshnevetskiy, A. L.
Zhmud, E. M.
author_sort Vyshnevetskiy, A. L.
title Random walks on finite groups converging after finite number of steps
title_short Random walks on finite groups converging after finite number of steps
title_full Random walks on finite groups converging after finite number of steps
title_fullStr Random walks on finite groups converging after finite number of steps
title_full_unstemmed Random walks on finite groups converging after finite number of steps
title_sort random walks on finite groups converging after finite number of steps
description Let \(P\) be a probability on a finite group \(G\), \(P^{(n)}=P \ast \ldots\ast P\) (\(n\) times) be an \(n\)-fold convolution of \(P\). If \(n \rightarrow \infty\), then under mild conditions \(P^{(n)}\) converges to the uniform probability \(U(g)=\frac 1{|G|}\) \((g\in G)\). We study the case when the sequence \(P^{(n)}\) reaches its limit \(U\) after finite number of steps: \(P^{(k)}=P^{(k+1)}= \dots=U\) for some \(k\). Let \(\Omega(G)\) be a set of the probabilities satisfying to that condition. Obviously, \(U\in \Omega(G)\). We prove that \(\Omega(G)\neq U\) for ``almost all'' non-Abelian groups and describe the groups for which \(\Omega(G)=U\). If \(P\in \Omega(G)\), then \(P^{(b)}=U\), where \(b\) is the maximal degree of irreducible complex representations of the group \(G\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/814
work_keys_str_mv AT vyshnevetskiyal randomwalksonfinitegroupsconvergingafterfinitenumberofsteps
AT zhmudem randomwalksonfinitegroupsconvergingafterfinitenumberofsteps
first_indexed 2024-04-12T06:25:51Z
last_indexed 2024-04-12T06:25:51Z
_version_ 1796109212404678656