Random walks on finite groups converging after finite number of steps
Let \(P\) be a probability on a finite group \(G\), \(P^{(n)}=P \ast \ldots\ast P\) (\(n\) times) be an \(n\)-fold convolution of \(P\). If \(n \rightarrow \infty\), then under mild conditions \(P^{(n)}\) converges to the uniform probability \(U(g)=\frac 1{|G|}\) \((g\in G)\). We study the case when...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/814 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSchreiben Sie den ersten Kommentar!