The Tits alternative for generalized triangle groups of type \((3,4,2)\)

A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Howie, James, Williams, Gerald
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\rangle \). Rosenberger has conjectured that every generalized triangle group \(G\) satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple \((p,q,r)\) is one of \((2,3,2),\) \((2,4,2),\) \((2,5,2),\) \((3,3,2),\) \((3,4,2),\) or \((3,5,2)\). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case \((p,q,r)=(3,4,2)\).