The Tits alternative for generalized triangle groups of type \((3,4,2)\)

A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Howie, James, Williams, Gerald
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-826
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8262018-03-22T09:57:42Z The Tits alternative for generalized triangle groups of type \((3,4,2)\) Howie, James Williams, Gerald Generalized triangle group, Tits alternative, free subgroup 20F05, 20E05, 57M07 A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\rangle \). Rosenberger has conjectured that every generalized triangle group \(G\) satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple \((p,q,r)\) is one of \((2,3,2),\) \((2,4,2),\) \((2,5,2),\) \((3,3,2),\) \((3,4,2),\) or \((3,5,2)\). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case \((p,q,r)=(3,4,2)\). Lugansk National Taras Shevchenko University 2018-03-22 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826 Algebra and Discrete Mathematics; Vol 7, No 4 (2008) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826/356 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-22T09:57:42Z
collection OJS
language English
topic Generalized triangle group
Tits alternative
free subgroup
20F05
20E05
57M07
spellingShingle Generalized triangle group
Tits alternative
free subgroup
20F05
20E05
57M07
Howie, James
Williams, Gerald
The Tits alternative for generalized triangle groups of type \((3,4,2)\)
topic_facet Generalized triangle group
Tits alternative
free subgroup
20F05
20E05
57M07
format Article
author Howie, James
Williams, Gerald
author_facet Howie, James
Williams, Gerald
author_sort Howie, James
title The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_short The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_full The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_fullStr The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_full_unstemmed The Tits alternative for generalized triangle groups of type \((3,4,2)\)
title_sort tits alternative for generalized triangle groups of type \((3,4,2)\)
description A generalized triangle group is a group that can be presented in the form \( G = \langle {x,y}\ |{x^p=y^q=w(x,y)^r=1} \rangle \) where \(p,q,r\geq 2\) and \(w(x,y)\) is a cyclically reduced word of length at least \(2\) in the free product \(\mathbb{Z}_p*\mathbb{Z}_q= \langle {x,y}\ |{x^p=y^q=1}\rangle \). Rosenberger has conjectured that every generalized triangle group \(G\) satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple \((p,q,r)\) is one of \((2,3,2),\) \((2,4,2),\) \((2,5,2),\) \((3,3,2),\) \((3,4,2),\) or \((3,5,2)\). Building on a result of Benyash-Krivets and Barkovich from this journal, we show that the Tits alternative holds in the case \((p,q,r)=(3,4,2)\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/826
work_keys_str_mv AT howiejames thetitsalternativeforgeneralizedtrianglegroupsoftype342
AT williamsgerald thetitsalternativeforgeneralizedtrianglegroupsoftype342
AT howiejames titsalternativeforgeneralizedtrianglegroupsoftype342
AT williamsgerald titsalternativeforgeneralizedtrianglegroupsoftype342
first_indexed 2025-07-17T10:31:38Z
last_indexed 2025-07-17T10:31:38Z
_version_ 1837890140315320320