Combinatorics of partial wreath power of finite inverse symmetric semigroup \(\mathcal{IS}_d\)
We study some combinatorial properties of \(\wr_p^k \mathcal{IS}_d\). In particular, we calculate its order, the number of idempotents and the number of \(\mathcal D\)-classes. For a given based graph \(\Gamma\subset T\) we compute the number of elements in its \(\mathcal D\)-class \(D_\Gamma\) and...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/834 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозиторії
Algebra and Discrete MathematicsРезюме: | We study some combinatorial properties of \(\wr_p^k \mathcal{IS}_d\). In particular, we calculate its order, the number of idempotents and the number of \(\mathcal D\)-classes. For a given based graph \(\Gamma\subset T\) we compute the number of elements in its \(\mathcal D\)-class \(D_\Gamma\) and the number of \(\mathcal R\)- and \(\mathcal L\)-classes in \(D_\Gamma\). |
---|