Self-similar groups and finite Gelfand pairs
We study the Basilica group \(B\), the iterated monodromy group \(I\) of the complex polynomial \(z^2+i\) and the Hanoi Towers group \(H^{(3)}\). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of \(B, I\) and \(H^{(3)}\) on each...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | D’Angeli, Daniele, Donno, Alfredo |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/843 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
Classification of the local isometry groups of rooted tree boundaries
von: Lavrenyuk, Yaroslav
Veröffentlicht: (2018) -
A note to our paper “Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees”
von: Lavrenyuk, Yaroslav V., et al.
Veröffentlicht: (2018) -
Conjugacy in finite state wreath powers of finite permutation groups
von: Oliynyk, Andriy, et al.
Veröffentlicht: (2019) -
On the finite state automorphism group of a rooted tree
von: Lavrenyuk, Yaroslav
Veröffentlicht: (2018) -
Dynamics of finite groups acting on the boundary of homogenous rooted tree
von: Szaszkowski, Zbigniew
Veröffentlicht: (2018)