On closed rational functions in several variables
Let \(\mathbb K= \bar{\mathbb K}\) be a field of characteristic zero. An element \(\varphi\in \mathbb K(x_1,\dots, x_{n})\) is called a closed rational function if the subfield \(\mathbb K(\varphi)\) is algebraically closed in the field \(\mathbb K(x_1,\dots, x_{n})\). We prove that a rational funct...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | Petravchuk, Anatoliy P., Iena, Oleksandr G. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/848 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On closed rational functions in several variables
von: Petravchuk, A.P., et al.
Veröffentlicht: (2007) -
On weakly semisimple derivations of the polynomial ring in two variables
von: Gavran, Volodimir, et al.
Veröffentlicht: (2018) -
FUNCTIONAL CORRELATION OF PARAMETERS AND CRITERIA OF RATIONAL CHOICE FOR ELECTRIC DEVICE
von: Zagirnyak, M. V., et al.
Veröffentlicht: (2014) -
On \(H\)-closed topological semigroups and semilattices
von: Chuchman, Ivan, et al.
Veröffentlicht: (2018) -
Further techniques on a polynomial positivity question of Collins, Dykema, and Torres-Ayala
von: Green, Nathaniel K., et al.
Veröffentlicht: (2024)