On closed rational functions in several variables
Let \(\mathbb K= \bar{\mathbb K}\) be a field of characteristic zero. An element \(\varphi\in \mathbb K(x_1,\dots, x_{n})\) is called a closed rational function if the subfield \(\mathbb K(\varphi)\) is algebraically closed in the field \(\mathbb K(x_1,\dots, x_{n})\). We prove that a rational funct...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/848 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |