On sum of a nilpotent and an ideally finite algebras
We study associative algebras \(R\) over arbitrary fields which can be decomposed into a sum \(R=A+B\) of their subalgebras \(A\) and \(B\) such that \(A^{2}=0\) and \(B\) is ideally finite (is a sum of its finite dimensional ideals). We prove that \(R\) has a locally nilpotent ideal \(I\) such tha...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | Bilun, Svitlana V. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/856 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On sum of a nilpotent and an ideally finite algebras
von: Bilun, Svitlana V.
Veröffentlicht: (2018) -
On action of outer derivations on nilpotent ideals of Lie algebras
von: Maksimenko, Dmitriy V.
Veröffentlicht: (2018) -
On action of outer derivations on nilpotent ideals of Lie algebras
von: Maksimenko, Dmitriy V.
Veröffentlicht: (2018) -
On one-sided Lie nilpotent ideals of associative rings
von: Luchko, Victoriya S., et al.
Veröffentlicht: (2018) -
Ideally finite Leibniz algebras
von: Kurdachenko, L. A., et al.
Veröffentlicht: (2023)