On semisimple algebra codes: generator theory

The class of affine variety codes is defined as the \(\mathbb F_q\) linear subspaces of \(\mathcal A\) a \(\mathbb F_q\)-semisimple algebra, where \(\mathbb F_q\) is the finite field with \(q=p^r\) elements and characteristic \(p\). It seems natural to impose to the code some extra structure such as...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Martınez-Moro, Edgar
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/861
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-861
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8612018-03-21T12:28:31Z On semisimple algebra codes: generator theory Martınez-Moro, Edgar Semisimple Algebra, Mattson-Solomon Transform, Discrete Fourier Transform, Grobner bases 13P10,94B05,94B15 The class of affine variety codes is defined as the \(\mathbb F_q\) linear subspaces of \(\mathcal A\) a \(\mathbb F_q\)-semisimple algebra, where \(\mathbb F_q\) is the finite field with \(q=p^r\) elements and characteristic \(p\). It seems natural to impose to the code some extra structure such as been a subalgebra of \(\mathcal A\). In this case we will have codes that have a Mattson-Solomon transform treatment as the classical cyclic codes. Moreover, the results on the structure of semisimple finite dimensional algebras allow us to study those codes from the generator point of view. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/861 Algebra and Discrete Mathematics; Vol 6, No 3 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/861/391 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Semisimple Algebra
Mattson-Solomon Transform
Discrete Fourier Transform
Grobner bases
13P10,94B05,94B15
spellingShingle Semisimple Algebra
Mattson-Solomon Transform
Discrete Fourier Transform
Grobner bases
13P10,94B05,94B15
Martınez-Moro, Edgar
On semisimple algebra codes: generator theory
topic_facet Semisimple Algebra
Mattson-Solomon Transform
Discrete Fourier Transform
Grobner bases
13P10,94B05,94B15
format Article
author Martınez-Moro, Edgar
author_facet Martınez-Moro, Edgar
author_sort Martınez-Moro, Edgar
title On semisimple algebra codes: generator theory
title_short On semisimple algebra codes: generator theory
title_full On semisimple algebra codes: generator theory
title_fullStr On semisimple algebra codes: generator theory
title_full_unstemmed On semisimple algebra codes: generator theory
title_sort on semisimple algebra codes: generator theory
description The class of affine variety codes is defined as the \(\mathbb F_q\) linear subspaces of \(\mathcal A\) a \(\mathbb F_q\)-semisimple algebra, where \(\mathbb F_q\) is the finite field with \(q=p^r\) elements and characteristic \(p\). It seems natural to impose to the code some extra structure such as been a subalgebra of \(\mathcal A\). In this case we will have codes that have a Mattson-Solomon transform treatment as the classical cyclic codes. Moreover, the results on the structure of semisimple finite dimensional algebras allow us to study those codes from the generator point of view.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/861
work_keys_str_mv AT martınezmoroedgar onsemisimplealgebracodesgeneratortheory
first_indexed 2024-04-12T06:25:27Z
last_indexed 2024-04-12T06:25:27Z
_version_ 1796109239767269376