Exponent matrices and topological equivalence of maps

Conjugate classes of continuous maps of the interval \([0,\, 1]\) into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of \((0,\, 1)\)-exponent matrices of special...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Fedorenko, Volodymyr, Kirichenko, Volodymyr, Plakhotnyk, Makar
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-867
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8672018-03-21T12:35:55Z Exponent matrices and topological equivalence of maps Fedorenko, Volodymyr Kirichenko, Volodymyr Plakhotnyk, Makar exponent matrix, finite orbits, topological equivalence 05С50, 37C15, 37C25 Conjugate classes of continuous maps of the interval \([0,\, 1]\) into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of \((0,\, 1)\)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867 Algebra and Discrete Mathematics; Vol 6, No 4 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867/397 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T12:35:55Z
collection OJS
language English
topic exponent matrix
finite orbits
topological equivalence
05С50
37C15
37C25
spellingShingle exponent matrix
finite orbits
topological equivalence
05С50
37C15
37C25
Fedorenko, Volodymyr
Kirichenko, Volodymyr
Plakhotnyk, Makar
Exponent matrices and topological equivalence of maps
topic_facet exponent matrix
finite orbits
topological equivalence
05С50
37C15
37C25
format Article
author Fedorenko, Volodymyr
Kirichenko, Volodymyr
Plakhotnyk, Makar
author_facet Fedorenko, Volodymyr
Kirichenko, Volodymyr
Plakhotnyk, Makar
author_sort Fedorenko, Volodymyr
title Exponent matrices and topological equivalence of maps
title_short Exponent matrices and topological equivalence of maps
title_full Exponent matrices and topological equivalence of maps
title_fullStr Exponent matrices and topological equivalence of maps
title_full_unstemmed Exponent matrices and topological equivalence of maps
title_sort exponent matrices and topological equivalence of maps
description Conjugate classes of continuous maps of the interval \([0,\, 1]\) into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of \((0,\, 1)\)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867
work_keys_str_mv AT fedorenkovolodymyr exponentmatricesandtopologicalequivalenceofmaps
AT kirichenkovolodymyr exponentmatricesandtopologicalequivalenceofmaps
AT plakhotnykmakar exponentmatricesandtopologicalequivalenceofmaps
first_indexed 2025-07-17T10:31:42Z
last_indexed 2025-07-17T10:31:42Z
_version_ 1837890140925591552