Exponent matrices and topological equivalence of maps
Conjugate classes of continuous maps of the interval \([0,\, 1]\) into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of \((0,\, 1)\)-exponent matrices of special...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-867 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-8672018-03-21T12:35:55Z Exponent matrices and topological equivalence of maps Fedorenko, Volodymyr Kirichenko, Volodymyr Plakhotnyk, Makar exponent matrix, finite orbits, topological equivalence 05С50, 37C15, 37C25 Conjugate classes of continuous maps of the interval \([0,\, 1]\) into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of \((0,\, 1)\)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867 Algebra and Discrete Mathematics; Vol 6, No 4 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867/397 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T12:35:55Z |
| collection |
OJS |
| language |
English |
| topic |
exponent matrix finite orbits topological equivalence 05С50 37C15 37C25 |
| spellingShingle |
exponent matrix finite orbits topological equivalence 05С50 37C15 37C25 Fedorenko, Volodymyr Kirichenko, Volodymyr Plakhotnyk, Makar Exponent matrices and topological equivalence of maps |
| topic_facet |
exponent matrix finite orbits topological equivalence 05С50 37C15 37C25 |
| format |
Article |
| author |
Fedorenko, Volodymyr Kirichenko, Volodymyr Plakhotnyk, Makar |
| author_facet |
Fedorenko, Volodymyr Kirichenko, Volodymyr Plakhotnyk, Makar |
| author_sort |
Fedorenko, Volodymyr |
| title |
Exponent matrices and topological equivalence of maps |
| title_short |
Exponent matrices and topological equivalence of maps |
| title_full |
Exponent matrices and topological equivalence of maps |
| title_fullStr |
Exponent matrices and topological equivalence of maps |
| title_full_unstemmed |
Exponent matrices and topological equivalence of maps |
| title_sort |
exponent matrices and topological equivalence of maps |
| description |
Conjugate classes of continuous maps of the interval \([0,\, 1]\) into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of \((0,\, 1)\)-exponent matrices of special form is constructed. Easy way of finding the quiver of the map in terms of the set of its extrema is found. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/867 |
| work_keys_str_mv |
AT fedorenkovolodymyr exponentmatricesandtopologicalequivalenceofmaps AT kirichenkovolodymyr exponentmatricesandtopologicalequivalenceofmaps AT plakhotnykmakar exponentmatricesandtopologicalequivalenceofmaps |
| first_indexed |
2025-07-17T10:31:42Z |
| last_indexed |
2025-07-17T10:31:42Z |
| _version_ |
1837890140925591552 |