Serial piecewise domains

A ring \(A\) is called a  piecewise domain with respect to the complete set of idempotents \(\{e_1, e_2, \ldots, e_m\}\) if every nonzero homomorphism  \(e_iA \rightarrow e_jA\) is a monomorphism.  In this paper we study the rings for which conditions of   being piecewise domain and being hereditary...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Gubareni, Nadiya, Khibina, Marina
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/868
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-868
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8682018-03-21T12:35:55Z Serial piecewise domains Gubareni, Nadiya Khibina, Marina piecewise domain, hereditary ring, semihereditary ring, serial ring, Noetherian diagonal, prime radical, prime quiver 16P40, 16G10 A ring \(A\) is called a  piecewise domain with respect to the complete set of idempotents \(\{e_1, e_2, \ldots, e_m\}\) if every nonzero homomorphism  \(e_iA \rightarrow e_jA\) is a monomorphism.  In this paper we study the rings for which conditions of   being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that  a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/868 Algebra and Discrete Mathematics; Vol 6, No 4 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/868/398 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T12:35:55Z
collection OJS
language English
topic piecewise domain
hereditary ring
semihereditary ring
serial ring
Noetherian diagonal
prime radical
prime quiver
16P40
16G10
spellingShingle piecewise domain
hereditary ring
semihereditary ring
serial ring
Noetherian diagonal
prime radical
prime quiver
16P40
16G10
Gubareni, Nadiya
Khibina, Marina
Serial piecewise domains
topic_facet piecewise domain
hereditary ring
semihereditary ring
serial ring
Noetherian diagonal
prime radical
prime quiver
16P40
16G10
format Article
author Gubareni, Nadiya
Khibina, Marina
author_facet Gubareni, Nadiya
Khibina, Marina
author_sort Gubareni, Nadiya
title Serial piecewise domains
title_short Serial piecewise domains
title_full Serial piecewise domains
title_fullStr Serial piecewise domains
title_full_unstemmed Serial piecewise domains
title_sort serial piecewise domains
description A ring \(A\) is called a  piecewise domain with respect to the complete set of idempotents \(\{e_1, e_2, \ldots, e_m\}\) if every nonzero homomorphism  \(e_iA \rightarrow e_jA\) is a monomorphism.  In this paper we study the rings for which conditions of   being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that  a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/868
work_keys_str_mv AT gubareninadiya serialpiecewisedomains
AT khibinamarina serialpiecewisedomains
first_indexed 2025-07-17T10:33:02Z
last_indexed 2025-07-17T10:33:02Z
_version_ 1837889888392839169