On quantales of preradical Bland filters and differential preradical filters

We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale.

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Melnyk, Ivanna
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-872
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8722018-03-21T12:35:55Z On quantales of preradical Bland filters and differential preradical filters Melnyk, Ivanna differential ring, quantale, differential preradical filter, differential preradical Bland filter, differential torsion theory, Bland torsion theory 20F05, 20E05, 57M07 We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872 Algebra and Discrete Mathematics; Vol 6, No 4 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872/402 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T12:35:55Z
collection OJS
language English
topic differential ring
quantale
differential preradical filter
differential preradical Bland filter
differential torsion theory
Bland torsion theory
20F05
20E05
57M07
spellingShingle differential ring
quantale
differential preradical filter
differential preradical Bland filter
differential torsion theory
Bland torsion theory
20F05
20E05
57M07
Melnyk, Ivanna
On quantales of preradical Bland filters and differential preradical filters
topic_facet differential ring
quantale
differential preradical filter
differential preradical Bland filter
differential torsion theory
Bland torsion theory
20F05
20E05
57M07
format Article
author Melnyk, Ivanna
author_facet Melnyk, Ivanna
author_sort Melnyk, Ivanna
title On quantales of preradical Bland filters and differential preradical filters
title_short On quantales of preradical Bland filters and differential preradical filters
title_full On quantales of preradical Bland filters and differential preradical filters
title_fullStr On quantales of preradical Bland filters and differential preradical filters
title_full_unstemmed On quantales of preradical Bland filters and differential preradical filters
title_sort on quantales of preradical bland filters and differential preradical filters
description We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872
work_keys_str_mv AT melnykivanna onquantalesofpreradicalblandfiltersanddifferentialpreradicalfilters
first_indexed 2025-07-17T10:37:21Z
last_indexed 2025-07-17T10:37:21Z
_version_ 1837890160202612736