On quantales of preradical Bland filters and differential preradical filters
We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale.
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-872 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-8722018-03-21T12:35:55Z On quantales of preradical Bland filters and differential preradical filters Melnyk, Ivanna differential ring, quantale, differential preradical filter, differential preradical Bland filter, differential torsion theory, Bland torsion theory 20F05, 20E05, 57M07 We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872 Algebra and Discrete Mathematics; Vol 6, No 4 (2007) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872/402 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T12:35:55Z |
| collection |
OJS |
| language |
English |
| topic |
differential ring quantale differential preradical filter differential preradical Bland filter differential torsion theory Bland torsion theory 20F05 20E05 57M07 |
| spellingShingle |
differential ring quantale differential preradical filter differential preradical Bland filter differential torsion theory Bland torsion theory 20F05 20E05 57M07 Melnyk, Ivanna On quantales of preradical Bland filters and differential preradical filters |
| topic_facet |
differential ring quantale differential preradical filter differential preradical Bland filter differential torsion theory Bland torsion theory 20F05 20E05 57M07 |
| format |
Article |
| author |
Melnyk, Ivanna |
| author_facet |
Melnyk, Ivanna |
| author_sort |
Melnyk, Ivanna |
| title |
On quantales of preradical Bland filters and differential preradical filters |
| title_short |
On quantales of preradical Bland filters and differential preradical filters |
| title_full |
On quantales of preradical Bland filters and differential preradical filters |
| title_fullStr |
On quantales of preradical Bland filters and differential preradical filters |
| title_full_unstemmed |
On quantales of preradical Bland filters and differential preradical filters |
| title_sort |
on quantales of preradical bland filters and differential preradical filters |
| description |
We prove that the set of all Bland preradical filters over an arbitrary differential ring form a quantale with respect to meets where the role of multiplication is played by the usual Gabriel pro-duct of filters. A subset of a differential pretorsion theory is a subquantale of this quantale. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/872 |
| work_keys_str_mv |
AT melnykivanna onquantalesofpreradicalblandfiltersanddifferentialpreradicalfilters |
| first_indexed |
2025-07-17T10:37:21Z |
| last_indexed |
2025-07-17T10:37:21Z |
| _version_ |
1837890160202612736 |