Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for \(n\)-Lie algebras. In particular, for...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | Stitzinger, Ernest, Williams, Michael P. |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/882 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsСхожі ресурси
-
Uncountably many non-isomorphic nilpotent real \(n\)-Lie algebras
за авторством: Stitzinger, Ernest, та інші
Опубліковано: (2018) -
Uncountably many non-isomorphic nilpotent real n-Lie algebras
за авторством: Stitzinger, E., та інші
Опубліковано: (2006) -
Frattini theory for \(N\)-Lie algebras
за авторством: Williams, Michael Peretzian
Опубліковано: (2018) -
Frattini theory for \(N\)-Lie algebras
за авторством: Williams, Michael Peretzian
Опубліковано: (2018) -
On action of outer derivations on nilpotent ideals of Lie algebras
за авторством: Maksimenko, Dmitriy V.
Опубліковано: (2018)