A construction of dual box
Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\) and \({\mathscr F}(\nabla)\) its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\)...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\) and \({\mathscr F}(\nabla)\) its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\) and \({\mathscr A}_{\nabla}\). These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \({\mathscr B}\) such that \({\mathscr B}-{\mathrm{mo\,}}\) is equivalent to \({\mathscr F}(\nabla)\). |
|---|