A construction of dual box

Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\)  and \({\mathscr F}(\nabla)\)  its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Ovsienko, Serge
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\)  and \({\mathscr F}(\nabla)\)  its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\) and \({\mathscr A}_{\nabla}\). These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \({\mathscr B}\) such that \({\mathscr B}-{\mathrm{mo\,}}\) is equivalent to \({\mathscr F}(\nabla)\).