A construction of dual box

Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\)  and \({\mathscr F}(\nabla)\)  its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\)...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Ovsienko, Serge
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\)  and \({\mathscr F}(\nabla)\)  its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\) and \({\mathscr A}_{\nabla}\). These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \({\mathscr B}\) such that \({\mathscr B}-{\mathrm{mo\,}}\) is equivalent to \({\mathscr F}(\nabla)\).