A construction of dual box
Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\) and \({\mathscr F}(\nabla)\) its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\)...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-890 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-8902018-03-21T07:47:47Z A construction of dual box Ovsienko, Serge box, derived category, differential graded category 16E30,16E35 Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\) and \({\mathscr F}(\nabla)\) its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\) and \({\mathscr A}_{\nabla}\). These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \({\mathscr B}\) such that \({\mathscr B}-{\mathrm{mo\,}}\) is equivalent to \({\mathscr F}(\nabla)\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890 Algebra and Discrete Mathematics; Vol 5, No 2 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890/419 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T07:47:47Z |
| collection |
OJS |
| language |
English |
| topic |
box derived category differential graded category 16E30,16E35 |
| spellingShingle |
box derived category differential graded category 16E30,16E35 Ovsienko, Serge A construction of dual box |
| topic_facet |
box derived category differential graded category 16E30,16E35 |
| format |
Article |
| author |
Ovsienko, Serge |
| author_facet |
Ovsienko, Serge |
| author_sort |
Ovsienko, Serge |
| title |
A construction of dual box |
| title_short |
A construction of dual box |
| title_full |
A construction of dual box |
| title_fullStr |
A construction of dual box |
| title_full_unstemmed |
A construction of dual box |
| title_sort |
construction of dual box |
| description |
Let \({\mathtt R}\) be a quasi-hereditary algebra, \({\mathscr F} (\Delta)\) and \({\mathscr F}(\nabla)\) its categories of good and cogood modules correspondingly. In [6] these categories were characterized as the categories of representations of some boxes \({\mathscr A}={\mathscr A}_{\Delta}\) and \({\mathscr A}_{\nabla}\). These last are the box theory counterparts of Ringel duality ([8]). We present an implicit construction of the box \({\mathscr B}\) such that \({\mathscr B}-{\mathrm{mo\,}}\) is equivalent to \({\mathscr F}(\nabla)\). |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/890 |
| work_keys_str_mv |
AT ovsienkoserge aconstructionofdualbox AT ovsienkoserge constructionofdualbox |
| first_indexed |
2025-07-17T10:31:43Z |
| last_indexed |
2025-07-17T10:31:43Z |
| _version_ |
1837890141223387136 |