Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups

Let \(\phi:G \to G\) be a group endomorphism where \(G\) is a finitely generated group of exponential growth, and denote by \(R(\phi)\) the number of twisted \(\phi\)-conjugacy classes. Fel'shtyn and Hill [7] conjectured that if \(\phi\) is injective, then \(R(\phi)\) is infinite. This conjectu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Fel’shtyn, Alexander, Goncalves, Daciberg L.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/896
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-896
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8962018-03-21T07:07:28Z Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups Fel’shtyn, Alexander Goncalves, Daciberg L. Reidemeister number, twisted conjugacy classes, Baumslag-Solitar groups 20E45, 37C25, 55M20 Let \(\phi:G \to G\) be a group endomorphism where \(G\) is a finitely generated group of exponential growth, and denote by \(R(\phi)\) the number of twisted \(\phi\)-conjugacy classes. Fel'shtyn and Hill [7] conjectured that if \(\phi\) is injective, then \(R(\phi)\) is infinite. This conjecture  is true for automorphisms of non-elementary Gromov hyperbolic groups, see [17] and [6]. It was showed in [12] that  the conjecture does not hold in general. Nevertheless in this paper, we show that the conjecture holds for injective homomorphisms for the family  of the Baumslag-Solitar groups \(B(m,n)\) where \(m\ne n\) and either \(m\) or \(n\) is greater than 1, and for automorphisms for the case \(m=n>1\). family  of the Baumslag-Solitar groups \(B(m,n)\) where \(m\ne n\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/896 Algebra and Discrete Mathematics; Vol 5, No 3 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/896/425 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T07:07:28Z
collection OJS
language English
topic Reidemeister number
twisted conjugacy classes
Baumslag-Solitar groups
20E45
37C25
55M20
spellingShingle Reidemeister number
twisted conjugacy classes
Baumslag-Solitar groups
20E45
37C25
55M20
Fel’shtyn, Alexander
Goncalves, Daciberg L.
Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
topic_facet Reidemeister number
twisted conjugacy classes
Baumslag-Solitar groups
20E45
37C25
55M20
format Article
author Fel’shtyn, Alexander
Goncalves, Daciberg L.
author_facet Fel’shtyn, Alexander
Goncalves, Daciberg L.
author_sort Fel’shtyn, Alexander
title Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_short Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_full Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_fullStr Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_full_unstemmed Twisted conjugacy classes of Automorphisms of Baumslag-Solitar groups
title_sort twisted conjugacy classes of automorphisms of baumslag-solitar groups
description Let \(\phi:G \to G\) be a group endomorphism where \(G\) is a finitely generated group of exponential growth, and denote by \(R(\phi)\) the number of twisted \(\phi\)-conjugacy classes. Fel'shtyn and Hill [7] conjectured that if \(\phi\) is injective, then \(R(\phi)\) is infinite. This conjecture  is true for automorphisms of non-elementary Gromov hyperbolic groups, see [17] and [6]. It was showed in [12] that  the conjecture does not hold in general. Nevertheless in this paper, we show that the conjecture holds for injective homomorphisms for the family  of the Baumslag-Solitar groups \(B(m,n)\) where \(m\ne n\) and either \(m\) or \(n\) is greater than 1, and for automorphisms for the case \(m=n>1\). family  of the Baumslag-Solitar groups \(B(m,n)\) where \(m\ne n\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/896
work_keys_str_mv AT felshtynalexander twistedconjugacyclassesofautomorphismsofbaumslagsolitargroups
AT goncalvesdacibergl twistedconjugacyclassesofautomorphismsofbaumslagsolitargroups
first_indexed 2025-07-17T10:32:10Z
last_indexed 2025-07-17T10:32:10Z
_version_ 1837889833601597440