On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups

In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are follo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Guo, Wenbin, Liu, Xi, Li, Baojun
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained.