On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are follo...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained. |
---|