On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups

In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are follo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Guo, Wenbin, Liu, Xi, Li, Baojun
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-897
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-8972018-03-21T07:07:28Z On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups Guo, Wenbin Liu, Xi Li, Baojun Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical, Fitting class 20D10, 20D25 In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 Algebra and Discrete Mathematics; Vol 5, No 3 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897/426 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical
Fitting class
20D10
20D25
spellingShingle Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical
Fitting class
20D10
20D25
Guo, Wenbin
Liu, Xi
Li, Baojun
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
topic_facet Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical
Fitting class
20D10
20D25
format Article
author Guo, Wenbin
Liu, Xi
Li, Baojun
author_facet Guo, Wenbin
Liu, Xi
Li, Baojun
author_sort Guo, Wenbin
title On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
title_short On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
title_full On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
title_fullStr On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
title_full_unstemmed On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
title_sort on \(\frak{f}\)-radicals of finite \(\pi\)-soluble groups
description In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897
work_keys_str_mv AT guowenbin onfrakfradicalsoffinitepisolublegroups
AT liuxi onfrakfradicalsoffinitepisolublegroups
AT libaojun onfrakfradicalsoffinitepisolublegroups
first_indexed 2024-04-12T06:25:28Z
last_indexed 2024-04-12T06:25:28Z
_version_ 1796109240584110080