On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups
In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are follo...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-897 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-8972018-03-21T07:07:28Z On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups Guo, Wenbin Liu, Xi Li, Baojun Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical, Fitting class 20D10, 20D25 In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 Algebra and Discrete Mathematics; Vol 5, No 3 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897/426 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical Fitting class 20D10 20D25 |
spellingShingle |
Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical Fitting class 20D10 20D25 Guo, Wenbin Liu, Xi Li, Baojun On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
topic_facet |
Finite group; \(\pi\)-soluble group; \({\cal F}\)-radical Fitting class 20D10 20D25 |
format |
Article |
author |
Guo, Wenbin Liu, Xi Li, Baojun |
author_facet |
Guo, Wenbin Liu, Xi Li, Baojun |
author_sort |
Guo, Wenbin |
title |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
title_short |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
title_full |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
title_fullStr |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
title_full_unstemmed |
On \(\frak{F}\)-radicals of finite \(\pi\)-soluble groups |
title_sort |
on \(\frak{f}\)-radicals of finite \(\pi\)-soluble groups |
description |
In this paper, we prove that for every local \(\pi\)-saturated Fitting class \({\cal F}\) with \(char ({\cal F})=\mathbb{P}\), the \({\cal F}\)-radical of every finite \(\pi\)-soluble groups \(G\) has the property: \(C_G(G_{\cal F})\subseteq G_{\cal F}\). From this, some well known results are followed and some new results are obtained. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/897 |
work_keys_str_mv |
AT guowenbin onfrakfradicalsoffinitepisolublegroups AT liuxi onfrakfradicalsoffinitepisolublegroups AT libaojun onfrakfradicalsoffinitepisolublegroups |
first_indexed |
2024-04-12T06:25:28Z |
last_indexed |
2024-04-12T06:25:28Z |
_version_ |
1796109240584110080 |