On minimal \(\omega\)-composition non-\(\frak H\)-formations

Let \(\frak{H}\) be some class of groups. A formation \(\frak{F}\) is called a minimal \(\tau\)-closed \(\omega\)-composition non-\(\frak{H}\)-formation [1] if \(\frak{F} \nsubseteq \frak{H}\) but \(\frak{F}_1 \subseteq \frak{H}\) for all proper \(\tau\)-closed \(\omega\)-composition subformations \...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Belous, Liudmila I., Selkin, Vadim M.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/903
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-903
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-9032018-03-21T07:55:00Z On minimal \(\omega\)-composition non-\(\frak H\)-formations Belous, Liudmila I. Selkin, Vadim M. formation, \(\tau\)-closed \(\omega\)-composition, satellite 20D20 Let \(\frak{H}\) be some class of groups. A formation \(\frak{F}\) is called a minimal \(\tau\)-closed \(\omega\)-composition non-\(\frak{H}\)-formation [1] if \(\frak{F} \nsubseteq \frak{H}\) but \(\frak{F}_1 \subseteq \frak{H}\) for all proper \(\tau\)-closed \(\omega\)-composition subformations \(\frak{F}_1\) of \(\frak{F}\). In this paper we describe the minimal \(\tau\)-closed \(\omega\)-composition non-\(\frak{H}\)-formations, where \(\frak H\) is a \(2\)-multiply local formation and \(\tau\) is a subgroup functor such that for any group \(G\) all subgroups  from \(\tau(G)\) are subnormal in \(G\). Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/903 Algebra and Discrete Mathematics; Vol 5, No 4 (2006) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/903/432 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-03-21T07:55:00Z
collection OJS
language English
topic formation
\(\tau\)-closed \(\omega\)-composition
satellite
20D20
spellingShingle formation
\(\tau\)-closed \(\omega\)-composition
satellite
20D20
Belous, Liudmila I.
Selkin, Vadim M.
On minimal \(\omega\)-composition non-\(\frak H\)-formations
topic_facet formation
\(\tau\)-closed \(\omega\)-composition
satellite
20D20
format Article
author Belous, Liudmila I.
Selkin, Vadim M.
author_facet Belous, Liudmila I.
Selkin, Vadim M.
author_sort Belous, Liudmila I.
title On minimal \(\omega\)-composition non-\(\frak H\)-formations
title_short On minimal \(\omega\)-composition non-\(\frak H\)-formations
title_full On minimal \(\omega\)-composition non-\(\frak H\)-formations
title_fullStr On minimal \(\omega\)-composition non-\(\frak H\)-formations
title_full_unstemmed On minimal \(\omega\)-composition non-\(\frak H\)-formations
title_sort on minimal \(\omega\)-composition non-\(\frak h\)-formations
description Let \(\frak{H}\) be some class of groups. A formation \(\frak{F}\) is called a minimal \(\tau\)-closed \(\omega\)-composition non-\(\frak{H}\)-formation [1] if \(\frak{F} \nsubseteq \frak{H}\) but \(\frak{F}_1 \subseteq \frak{H}\) for all proper \(\tau\)-closed \(\omega\)-composition subformations \(\frak{F}_1\) of \(\frak{F}\). In this paper we describe the minimal \(\tau\)-closed \(\omega\)-composition non-\(\frak{H}\)-formations, where \(\frak H\) is a \(2\)-multiply local formation and \(\tau\) is a subgroup functor such that for any group \(G\) all subgroups  from \(\tau(G)\) are subnormal in \(G\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/903
work_keys_str_mv AT belousliudmilai onminimalomegacompositionnonfrakhformations
AT selkinvadimm onminimalomegacompositionnonfrakhformations
first_indexed 2025-07-17T10:36:44Z
last_indexed 2025-07-17T10:36:44Z
_version_ 1837890120835923968