Abnormal subgroups and Carter subgroups in some infinite groups

Some properties of abnormal subgroups in generalized soluble groups are  considered. In particular, the transitivity of abnormality in metahypercentral groups is proven. Also it is proven that a subgroup \(H\) of a radical group G is abnormal in \(G\) if and only if every intermediate subgroup for \...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Kurdachenko, L. A., Subbotin, I. Ya.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/917
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Some properties of abnormal subgroups in generalized soluble groups are  considered. In particular, the transitivity of abnormality in metahypercentral groups is proven. Also it is proven that a subgroup \(H\) of a radical group G is abnormal in \(G\) if and only if every intermediate subgroup for \(H\) coincides with its normalizer in \(G\). This result extends on radical groups the well-known criterion of abnormality for finite soluble groups due to D. Taunt. For some infinite groups (not only periodic) the existence of Carter subgroups and their conjugation have been also obtained.