Abnormal subgroups and Carter subgroups in some infinite groups
Some properties of abnormal subgroups in generalized soluble groups are considered. In particular, the transitivity of abnormality in metahypercentral groups is proven. Also it is proven that a subgroup \(H\) of a radical group G is abnormal in \(G\) if and only if every intermediate subgroup for \...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/917 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| Резюме: | Some properties of abnormal subgroups in generalized soluble groups are considered. In particular, the transitivity of abnormality in metahypercentral groups is proven. Also it is proven that a subgroup \(H\) of a radical group G is abnormal in \(G\) if and only if every intermediate subgroup for \(H\) coincides with its normalizer in \(G\). This result extends on radical groups the well-known criterion of abnormality for finite soluble groups due to D. Taunt. For some infinite groups (not only periodic) the existence of Carter subgroups and their conjugation have been also obtained. |
|---|