Diagonalizability theorems for matrices over rings with finite stable range

We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilo...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Zabavsky, Bogdan
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/923
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:We construct the theory of diagonalizability for matrices over Bezout ring with finite stable range. It is shown that every commutative Bezout ring with compact minimal prime spectrum is Hermite. It is also shown that a principal ideal domain with stable range 1 is Euclidean domain, and every semilocal principal ideal domain is Euclidean domain. It is proved that every matrix over an elementary divisor ring can be reduced to "almost" diagonal matrix by elementary transformations.