Some properties of primitive matrices over Bezout B-domain
The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B - domain, i.e. commutative domain finitely generated principal ideal in which for all \(a, b, c\) with \((a, b, c)=1, c\neq 0,\) there exists element \(r\i...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
| Теми: | |
| Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/935 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematics| id |
oai:ojs.admjournal.luguniv.edu.ua:article-935 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-9352018-03-21T06:34:59Z Some properties of primitive matrices over Bezout B-domain Shchedryk, V. P. elementary divisor ring, Bezout B−domain, canonical diagonal form, transformable matrices, invariants, primitive matrices 15A21 The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B - domain, i.e. commutative domain finitely generated principal ideal in which for all \(a, b, c\) with \((a, b, c)=1, c\neq 0,\) there exists element \(r\in R\), such that \((a+rb, c)=1\) is investigated. The results obtained enable to describe invariants transforming matrices, i.e. matrices which reduce the given matrix to its canonical diagonal form. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/935 Algebra and Discrete Mathematics; Vol 4, No 2 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/935/464 Copyright (c) 2018 Algebra and Discrete Mathematics |
| institution |
Algebra and Discrete Mathematics |
| baseUrl_str |
|
| datestamp_date |
2018-03-21T06:34:59Z |
| collection |
OJS |
| language |
English |
| topic |
elementary divisor ring Bezout B−domain canonical diagonal form transformable matrices invariants primitive matrices 15A21 |
| spellingShingle |
elementary divisor ring Bezout B−domain canonical diagonal form transformable matrices invariants primitive matrices 15A21 Shchedryk, V. P. Some properties of primitive matrices over Bezout B-domain |
| topic_facet |
elementary divisor ring Bezout B−domain canonical diagonal form transformable matrices invariants primitive matrices 15A21 |
| format |
Article |
| author |
Shchedryk, V. P. |
| author_facet |
Shchedryk, V. P. |
| author_sort |
Shchedryk, V. P. |
| title |
Some properties of primitive matrices over Bezout B-domain |
| title_short |
Some properties of primitive matrices over Bezout B-domain |
| title_full |
Some properties of primitive matrices over Bezout B-domain |
| title_fullStr |
Some properties of primitive matrices over Bezout B-domain |
| title_full_unstemmed |
Some properties of primitive matrices over Bezout B-domain |
| title_sort |
some properties of primitive matrices over bezout b-domain |
| description |
The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B - domain, i.e. commutative domain finitely generated principal ideal in which for all \(a, b, c\) with \((a, b, c)=1, c\neq 0,\) there exists element \(r\in R\), such that \((a+rb, c)=1\) is investigated. The results obtained enable to describe invariants transforming matrices, i.e. matrices which reduce the given matrix to its canonical diagonal form. |
| publisher |
Lugansk National Taras Shevchenko University |
| publishDate |
2018 |
| url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/935 |
| work_keys_str_mv |
AT shchedrykvp somepropertiesofprimitivematricesoverbezoutbdomain |
| first_indexed |
2025-07-17T10:36:46Z |
| last_indexed |
2025-07-17T10:36:46Z |
| _version_ |
1837890123371380736 |