On strongly graded Gorestein orders
Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/937 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSummary: | Let \(G\) be a finite group and let \(\Lambda=\oplus_{g \in G}\Lambda_{g}\) be a strongly \(G\)-graded \(R\)-algebra, where \(R\) is a commutative ring with unity. We prove that if \(R\) is a Dedekind domain with quotient field \(K\), \(\Lambda\) is an \(R\)-order in a separable \(K\)-algebra such that the algebra \(\Lambda_{1}\) is a Gorenstein \(R\)-order, then \(\Lambda\) is also a Gorenstein \(R\)-order. Moreover, we prove that the induction functor \(ind:\ Mod\Lambda_{H}\rightarrow\ Mod\Lambda \) defined in Section 3, for a subgroup \(H\) of \(G\), commutes with the standard duality functor. |
---|