Rings which have \((m, n)\)-flat injective modules

A  ring  \(R\)  is  said  to  be  a left \(IF-(m,n)\) ring if every  injective  left \(R\)-module is \((m,n)\)-flat. In this paper, several characterizations of left \(IF-(m,n)\) rings are investigated, some conditions under which \(R\) is left \(IF-(m,n)\) are given. Furthermore, conditions under w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Zhanmin, Zhu, Zhangsheng, Xia
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/947
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-947
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-9472018-03-21T06:49:56Z Rings which have \((m, n)\)-flat injective modules Zhanmin, Zhu Zhangsheng, Xia injective modules; (m, n)-flat modules; left IF−(m, n) rings; left IF − 1 rings 16D50, 16E65 A  ring  \(R\)  is  said  to  be  a left \(IF-(m,n)\) ring if every  injective  left \(R\)-module is \((m,n)\)-flat. In this paper, several characterizations of left \(IF-(m,n)\) rings are investigated, some conditions under which \(R\) is left \(IF-(m,n)\) are given. Furthermore, conditions under which a left \(IF-1\) ring (i.e., \(IF-(1,1)\) ring) is a field, a regular ring and a semisimple ring are studied respectively. Lugansk National Taras Shevchenko University 2018-03-21 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/947 Algebra and Discrete Mathematics; Vol 4, No 4 (2005) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/947/476 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
collection OJS
language English
topic injective modules; (m
n)-flat modules; left IF−(m
n) rings; left IF − 1 rings
16D50
16E65
spellingShingle injective modules; (m
n)-flat modules; left IF−(m
n) rings; left IF − 1 rings
16D50
16E65
Zhanmin, Zhu
Zhangsheng, Xia
Rings which have \((m, n)\)-flat injective modules
topic_facet injective modules; (m
n)-flat modules; left IF−(m
n) rings; left IF − 1 rings
16D50
16E65
format Article
author Zhanmin, Zhu
Zhangsheng, Xia
author_facet Zhanmin, Zhu
Zhangsheng, Xia
author_sort Zhanmin, Zhu
title Rings which have \((m, n)\)-flat injective modules
title_short Rings which have \((m, n)\)-flat injective modules
title_full Rings which have \((m, n)\)-flat injective modules
title_fullStr Rings which have \((m, n)\)-flat injective modules
title_full_unstemmed Rings which have \((m, n)\)-flat injective modules
title_sort rings which have \((m, n)\)-flat injective modules
description A  ring  \(R\)  is  said  to  be  a left \(IF-(m,n)\) ring if every  injective  left \(R\)-module is \((m,n)\)-flat. In this paper, several characterizations of left \(IF-(m,n)\) rings are investigated, some conditions under which \(R\) is left \(IF-(m,n)\) are given. Furthermore, conditions under which a left \(IF-1\) ring (i.e., \(IF-(1,1)\) ring) is a field, a regular ring and a semisimple ring are studied respectively.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/947
work_keys_str_mv AT zhanminzhu ringswhichhavemnflatinjectivemodules
AT zhangshengxia ringswhichhavemnflatinjectivemodules
first_indexed 2024-04-12T06:25:30Z
last_indexed 2024-04-12T06:25:30Z
_version_ 1796109224812478464