A note on maximal ideals in ordered semigroups
In commutative rings having an identity element, every maximal ideal is a prime ideal, but the converse statement does not hold, in general. According to the present note, similar results for ordered semigroups and semigroups -without order- also hold. In fact, we prove that in commutative ordered s...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/951 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | In commutative rings having an identity element, every maximal ideal is a prime ideal, but the converse statement does not hold, in general. According to the present note, similar results for ordered semigroups and semigroups -without order- also hold. In fact, we prove that in commutative ordered semigroups with identity each maximal ideal is a prime ideal, the converse statement does not hold, in general. |
---|