On intersections of normal subgroups in free groups

Let \(N_1\) (respectively \(N_2\)) be a normal closure of a set \(R_1=\{ u_i \}\) (respectively \(R_2=\{ v_j \}\)) of cyclically reduced words of the free group \(F(A)\). In the paper we consider geometric conditions on \(R_1\) and \(R_2\) for \(N_1\cap N_2=[N_1,N_2].\) In particular, it turns out t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Kulikova, O. V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/952
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(N_1\) (respectively \(N_2\)) be a normal closure of a set \(R_1=\{ u_i \}\) (respectively \(R_2=\{ v_j \}\)) of cyclically reduced words of the free group \(F(A)\). In the paper we consider geometric conditions on \(R_1\) and \(R_2\) for \(N_1\cap N_2=[N_1,N_2].\) In particular, it turns out that if a presentation \(<A\, \mid R_1,R_2>\)  is aspherical (for example, it satisfies small cancellation conditions \(C(p)\& T(q)\) with \(1/p+1/q=1/2\)), then the equality \(N_1\cap N_2=[N_1,N_2]\) holds.