2025-02-22T10:10:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-955%22&qt=morelikethis&rows=5
2025-02-22T10:10:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22oai%3Aojs.admjournal.luguniv.edu.ua%3Aarticle-955%22&qt=morelikethis&rows=5
2025-02-22T10:10:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:10:11-05:00 DEBUG: Deserialized SOLR response
On check character systems over quasigroups and loops
In this article we study check character systems that is error detecting codes, which arise by appending a check digit \(a_n\) to every word \(a_1a_2...a_{n-1}: a_1a_2...a_{n-1} \rightarrow a_1a_2...a_{n-1}a_n\) with the check formula \( (...((a_1\cdot \delta a_2)\cdot \delta^2a_3)...)\cdot \delta^{...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/955 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:ojs.admjournal.luguniv.edu.ua:article-955 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-9552018-05-13T07:14:40Z On check character systems over quasigroups and loops Belyavskaya, G. B. quasigroup, loop, group, automorphism, check character system, code 20N05, 20N15, 94B60, 94B65 In this article we study check character systems that is error detecting codes, which arise by appending a check digit \(a_n\) to every word \(a_1a_2...a_{n-1}: a_1a_2...a_{n-1} \rightarrow a_1a_2...a_{n-1}a_n\) with the check formula \( (...((a_1\cdot \delta a_2)\cdot \delta^2a_3)...)\cdot \delta^{n-2}a_{n-1})\cdot\delta^{n-1}a_n = c\), where \(Q(\cdot)\) is a quasigroup or a loop, \(\delta\) is a permutation of \(Q\), \(c \in Q\). We consider detection sets for such errors as transpositions (\(ab \rightarrow ba\)), jump transpositions (\(acb \rightarrow bca\)), twin errors (\(aa \rightarrow bb\)) and jump twin errors (\(aca \rightarrow bcb\)) and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types. Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/955 Algebra and Discrete Mathematics; Vol 2, No 2 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/955/484 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
quasigroup loop group automorphism check character system code 20N05 20N15 94B60 94B65 |
spellingShingle |
quasigroup loop group automorphism check character system code 20N05 20N15 94B60 94B65 Belyavskaya, G. B. On check character systems over quasigroups and loops |
topic_facet |
quasigroup loop group automorphism check character system code 20N05 20N15 94B60 94B65 |
format |
Article |
author |
Belyavskaya, G. B. |
author_facet |
Belyavskaya, G. B. |
author_sort |
Belyavskaya, G. B. |
title |
On check character systems over quasigroups and loops |
title_short |
On check character systems over quasigroups and loops |
title_full |
On check character systems over quasigroups and loops |
title_fullStr |
On check character systems over quasigroups and loops |
title_full_unstemmed |
On check character systems over quasigroups and loops |
title_sort |
on check character systems over quasigroups and loops |
description |
In this article we study check character systems that is error detecting codes, which arise by appending a check digit \(a_n\) to every word \(a_1a_2...a_{n-1}: a_1a_2...a_{n-1} \rightarrow a_1a_2...a_{n-1}a_n\) with the check formula \( (...((a_1\cdot \delta a_2)\cdot \delta^2a_3)...)\cdot \delta^{n-2}a_{n-1})\cdot\delta^{n-1}a_n = c\), where \(Q(\cdot)\) is a quasigroup or a loop, \(\delta\) is a permutation of \(Q\), \(c \in Q\). We consider detection sets for such errors as transpositions (\(ab \rightarrow ba\)), jump transpositions (\(acb \rightarrow bca\)), twin errors (\(aa \rightarrow bb\)) and jump twin errors (\(aca \rightarrow bcb\)) and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types. |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/955 |
work_keys_str_mv |
AT belyavskayagb oncheckcharactersystemsoverquasigroupsandloops |
first_indexed |
2024-04-12T06:25:56Z |
last_indexed |
2024-04-12T06:25:56Z |
_version_ |
1796109214415847424 |