\(N\) – real fields
A field F is n-real if -1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank ( \(AA^t\) ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/961 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsБудьте першим, хто залишить коментар!