On equivalence of some subcategories of modules in Morita contexts

A Morita context \((R,\,_{R}\!V_{S},\,_{S}\!W_{R},S)\) defines the isomorphism \({\cal L}_{0}(R) \cong {\cal L}_{0}(S)\) of lattices of torsions \(r\geq r_{\scriptscriptstyle I}\) of \(R\)-\(Mod\) and torsions \(s\geq r_{\scriptscriptstyle J}\) of \(S\)-\(Mod\), where \(I\) and \(J\) are the trace i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Kashu, A. I.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-963
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-9632018-05-13T10:43:19Z On equivalence of some subcategories of modules in Morita contexts Kashu, A. I. torsion (torsion theory), Morita context, torsion free module, accessible module, equivalence 16S90, 16D90 A Morita context \((R,\,_{R}\!V_{S},\,_{S}\!W_{R},S)\) defines the isomorphism \({\cal L}_{0}(R) \cong {\cal L}_{0}(S)\) of lattices of torsions \(r\geq r_{\scriptscriptstyle I}\) of \(R\)-\(Mod\) and torsions \(s\geq r_{\scriptscriptstyle J}\) of \(S\)-\(Mod\), where \(I\) and \(J\) are the trace ideals of the given context. For every pair \((r,s)\) of corresponding torsions the modifications of functors \(T^{W}=W\otimes _{R}\)- and \(T^{V}=V\otimes _{S}\)- are considered:\[R\textrm{-}Mod\supseteq \mathcal{P}(r)\begin{array}{c}\begin{array}{c}\underrightarrow{\quad\bar{T}^W=(1/s)\cdot T^W\quad}\\\overleftarrow{\quad\bar{T}^V=(1/r)\cdot T^{V}\quad}\end{array}\end{array}\mathcal{P}(s)\subseteq S\textrm{-}Mod,\]where \({\cal P}(r)\) and \({\cal P}(s)\) are the classes of torsion free modules. It is proved that these functors define the equivalence \begin{equation*} {\cal P}(r)\cap {\cal J}_{I}\approx {\cal P}(s)\cap {\cal J}_{J}, \end{equation*} where \({\cal P}(r)=\{_{R}M\ |\ r(M)=0\}\) and \({\cal J}_{I}=\{_{R}M\ |\ IM=M\}.\) Lugansk National Taras Shevchenko University 2018-05-13 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963 Algebra and Discrete Mathematics; Vol 2, No 3 (2003) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963/492 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-13T10:43:19Z
collection OJS
language English
topic torsion (torsion theory)
Morita context
torsion free module
accessible module
equivalence
16S90
16D90
spellingShingle torsion (torsion theory)
Morita context
torsion free module
accessible module
equivalence
16S90
16D90
Kashu, A. I.
On equivalence of some subcategories of modules in Morita contexts
topic_facet torsion (torsion theory)
Morita context
torsion free module
accessible module
equivalence
16S90
16D90
format Article
author Kashu, A. I.
author_facet Kashu, A. I.
author_sort Kashu, A. I.
title On equivalence of some subcategories of modules in Morita contexts
title_short On equivalence of some subcategories of modules in Morita contexts
title_full On equivalence of some subcategories of modules in Morita contexts
title_fullStr On equivalence of some subcategories of modules in Morita contexts
title_full_unstemmed On equivalence of some subcategories of modules in Morita contexts
title_sort on equivalence of some subcategories of modules in morita contexts
description A Morita context \((R,\,_{R}\!V_{S},\,_{S}\!W_{R},S)\) defines the isomorphism \({\cal L}_{0}(R) \cong {\cal L}_{0}(S)\) of lattices of torsions \(r\geq r_{\scriptscriptstyle I}\) of \(R\)-\(Mod\) and torsions \(s\geq r_{\scriptscriptstyle J}\) of \(S\)-\(Mod\), where \(I\) and \(J\) are the trace ideals of the given context. For every pair \((r,s)\) of corresponding torsions the modifications of functors \(T^{W}=W\otimes _{R}\)- and \(T^{V}=V\otimes _{S}\)- are considered:\[R\textrm{-}Mod\supseteq \mathcal{P}(r)\begin{array}{c}\begin{array}{c}\underrightarrow{\quad\bar{T}^W=(1/s)\cdot T^W\quad}\\\overleftarrow{\quad\bar{T}^V=(1/r)\cdot T^{V}\quad}\end{array}\end{array}\mathcal{P}(s)\subseteq S\textrm{-}Mod,\]where \({\cal P}(r)\) and \({\cal P}(s)\) are the classes of torsion free modules. It is proved that these functors define the equivalence \begin{equation*} {\cal P}(r)\cap {\cal J}_{I}\approx {\cal P}(s)\cap {\cal J}_{J}, \end{equation*} where \({\cal P}(r)=\{_{R}M\ |\ r(M)=0\}\) and \({\cal J}_{I}=\{_{R}M\ |\ IM=M\}.\)
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963
work_keys_str_mv AT kashuai onequivalenceofsomesubcategoriesofmodulesinmoritacontexts
first_indexed 2025-07-17T10:31:47Z
last_indexed 2025-07-17T10:31:47Z
_version_ 1837890142802542592