On equivalence of some subcategories of modules in Morita contexts
A Morita context \((R,\,_{R}\!V_{S},\,_{S}\!W_{R},S)\) defines the isomorphism \({\cal L}_{0}(R) \cong {\cal L}_{0}(S)\) of lattices of torsions \(r\geq r_{\scriptscriptstyle I}\) of \(R\)-\(Mod\) and torsions \(s\geq r_{\scriptscriptstyle J}\) of \(S\)-\(Mod\), where \(I\) and \(J\) are the trace i...
Saved in:
| Date: | 2018 |
|---|---|
| Main Author: | Kashu, A. I. |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/963 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsSimilar Items
-
A survey of results on radicals and torsions in modules
by: Kashu, A. I.
Published: (2016) -
Morita equivalence of semirings with local units
by: Das, M., et al.
Published: (2021) -
On the nilpotence of the prime radical in module categories
by: Arellano, C., et al.
Published: (2022) -
Clean coalgebras and clean comodules of finitely generated projective modules
by: Puspita, N. P., et al.
Published: (2021) -
Clean coalgebras and clean comodules of finitely generated projective modules
by: Puspita, N. P., et al.
Published: (2021)