On characteristic properties of semigroups

Let \(\mathcal{K}\) be a class of  semigroups and \(\mathcal{P}\)  be a set of general properties of semigroups. We call a subset \(Q\) of \(\mathcal{P}\)   cha\-racteristic for a semigroup\(S\in\mathcal{K}\) if, up to isomorphism and anti-isomorphism, \(S\) is the only semigroup in\(\mathcal{K}\),...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Bondarenko, Vitaliy M., Zaciha, Yaroslav V.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2015
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/97
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:Let \(\mathcal{K}\) be a class of  semigroups and \(\mathcal{P}\)  be a set of general properties of semigroups. We call a subset \(Q\) of \(\mathcal{P}\)   cha\-racteristic for a semigroup\(S\in\mathcal{K}\) if, up to isomorphism and anti-isomorphism, \(S\) is the only semigroup in\(\mathcal{K}\), which satisfies all the properties from \(Q\). The set of properties   \(\mathcal{P}\) is called char-complete for \(\mathcal{K}\) if for any \(S\in \mathcal{K}\)the set of all properties\(P\in\mathcal{P}\),  which hold for the semigroup \(S\),  is  characteristic for \(S\).We indicate a  7-element set of properties  of semigroups   which  is a minimal char-complete setfor the class of semigroups of order \(3\).