Root vectors of the composition algebra of the Kronecker algebra
According to the canonical isomorphism between the positive part \({\bf U}^+_q({\bf g})\) of the Drinfeld-Jimbo quantum group \({\bf U} _q ({\bf g})\) and the generic composition algebra \({\mathcal C} (\Delta)\) of \(\Lambda\), where the Kac-Moody Lie algebra \({\bf g}\) and the finite dimensional...
Saved in:
| Date: | 2018 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Lugansk National Taras Shevchenko University
2018
|
| Subjects: | |
| Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/979 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Summary: | According to the canonical isomorphism between the positive part \({\bf U}^+_q({\bf g})\) of the Drinfeld-Jimbo quantum group \({\bf U} _q ({\bf g})\) and the generic composition algebra \({\mathcal C} (\Delta)\) of \(\Lambda\), where the Kac-Moody Lie algebra \({\bf g}\) and the finite dimensional hereditary algebra \(\Lambda\) have the same diagram, in specially, we get a realization of quantum root vectors of the generic composition algebra of the Kronecker algebra by using the Ringel-Hall approach. The commutation relations among all root vectors are given and an integral PBW-basis of this algebra is also obtained. |
|---|