On the Tits alternative for some generalized triangle groups
One says that the Tits alternative holds for a finitely generated group \(\Gamma\) if \(\Gamma\) contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups \(T(k,l,m,R)=\langle...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/988 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | One says that the Tits alternative holds for a finitely generated group \(\Gamma\) if \(\Gamma\) contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups \(T(k,l,m,R)=\langle a,b; a^k=b^l=R^m(a,b)=1\rangle\). In the paper Rosenberger's conjecture is proved for groups \(T(2,l,2,R)\) with \(l=6,12,30,60\) and some special groups \(T(3,4,2,R)\). |
---|