On the Tits alternative for some generalized triangle groups

One says that the Tits alternative holds for a finitely generated group \(\Gamma\) if \(\Gamma\) contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups \(T(k,l,m,R)=\langle...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Beniash-Kryvets, Valery, Barkovich, Oxana
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2018
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/988
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
Опис
Резюме:One says that the Tits alternative holds for a finitely generated group \(\Gamma\) if \(\Gamma\) contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups \(T(k,l,m,R)=\langle a,b; a^k=b^l=R^m(a,b)=1\rangle\). In the paper Rosenberger's conjecture is proved for groups \(T(2,l,2,R)\) with \(l=6,12,30,60\) and some special groups \(T(3,4,2,R)\).