On the Tits alternative for some generalized triangle groups
One says that the Tits alternative holds for a finitely generated group \(\Gamma\) if \(\Gamma\) contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups \(T(k,l,m,R)=\langle...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/988 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete Mathematicsid |
oai:ojs.admjournal.luguniv.edu.ua:article-988 |
---|---|
record_format |
ojs |
spelling |
oai:ojs.admjournal.luguniv.edu.ua:article-9882018-05-15T05:12:44Z On the Tits alternative for some generalized triangle groups Beniash-Kryvets, Valery Barkovich, Oxana Tits alternative, generalized triangle group, free subgroup 20E06, 20E07, 20H10 One says that the Tits alternative holds for a finitely generated group \(\Gamma\) if \(\Gamma\) contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups \(T(k,l,m,R)=\langle a,b; a^k=b^l=R^m(a,b)=1\rangle\). In the paper Rosenberger's conjecture is proved for groups \(T(2,l,2,R)\) with \(l=6,12,30,60\) and some special groups \(T(3,4,2,R)\). Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/988 Algebra and Discrete Mathematics; Vol 3, No 2 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/988/517 Copyright (c) 2018 Algebra and Discrete Mathematics |
institution |
Algebra and Discrete Mathematics |
collection |
OJS |
language |
English |
topic |
Tits alternative generalized triangle group free subgroup 20E06 20E07 20H10 |
spellingShingle |
Tits alternative generalized triangle group free subgroup 20E06 20E07 20H10 Beniash-Kryvets, Valery Barkovich, Oxana On the Tits alternative for some generalized triangle groups |
topic_facet |
Tits alternative generalized triangle group free subgroup 20E06 20E07 20H10 |
format |
Article |
author |
Beniash-Kryvets, Valery Barkovich, Oxana |
author_facet |
Beniash-Kryvets, Valery Barkovich, Oxana |
author_sort |
Beniash-Kryvets, Valery |
title |
On the Tits alternative for some generalized triangle groups |
title_short |
On the Tits alternative for some generalized triangle groups |
title_full |
On the Tits alternative for some generalized triangle groups |
title_fullStr |
On the Tits alternative for some generalized triangle groups |
title_full_unstemmed |
On the Tits alternative for some generalized triangle groups |
title_sort |
on the tits alternative for some generalized triangle groups |
description |
One says that the Tits alternative holds for a finitely generated group \(\Gamma\) if \(\Gamma\) contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups \(T(k,l,m,R)=\langle a,b; a^k=b^l=R^m(a,b)=1\rangle\). In the paper Rosenberger's conjecture is proved for groups \(T(2,l,2,R)\) with \(l=6,12,30,60\) and some special groups \(T(3,4,2,R)\). |
publisher |
Lugansk National Taras Shevchenko University |
publishDate |
2018 |
url |
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/988 |
work_keys_str_mv |
AT beniashkryvetsvalery onthetitsalternativeforsomegeneralizedtrianglegroups AT barkovichoxana onthetitsalternativeforsomegeneralizedtrianglegroups |
first_indexed |
2024-04-12T06:25:31Z |
last_indexed |
2024-04-12T06:25:31Z |
_version_ |
1796109256917778432 |