On wildness of idempotent generated algebras associated with extended Dynkin diagrams

Let \(\Lambda\) denote an extended Dynkin diagram with vertex set \(\Lambda_0=\{0,1,\ldots, n\}\). For a vertex \(i\), denote by \(S(i)\) the set of vertices \(j\) such that there is an edge joining \(i\) and \(j\); one assumes  the diagram has a unique vertex \(p\), say \(p=0\), with \(|S(p)|=3\)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Bondarenko, Vitalij M.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/995
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-995
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-9952018-05-15T06:07:40Z On wildness of idempotent generated algebras associated with extended Dynkin diagrams Bondarenko, Vitalij M. idempotent, extended Dynkin diagram, representation, wild type 16G60; 15A21, 46K10, 46L05 Let \(\Lambda\) denote an extended Dynkin diagram with vertex set \(\Lambda_0=\{0,1,\ldots, n\}\). For a vertex \(i\), denote by \(S(i)\) the set of vertices \(j\) such that there is an edge joining \(i\) and \(j\); one assumes  the diagram has a unique vertex \(p\), say \(p=0\), with \(|S(p)|=3\). Further, denote by \(\Lambda\setminus 0\) the full subgraph of \(\Lambda\) with  vertex set \(\Lambda_0\setminus\{0\}\). Let \(\Delta=(\delta_i\,|\,i\in \Lambda_0)\in \mathbb{Z}^{|\Lambda_0|}\) be an imaginary root of \(\Lambda\), and let \(k\) be a field of arbitrary characteristic (with unit element 1). We prove that if \(\Lambda\) is an extended Dynkin diagram of type \(\tilde{D_4}\), \(\tilde{E_6}\) or \(\tilde{E_7}\), then the \(k\)-algebra \({\cal Q}_k(\Lambda,\Delta)\) with generators  \(e_i\), \(i\in\Lambda_0\setminus\{0\}\), and relations  \(e_i^2=e_i\), \(e_ie_j=0\) if \(i\) and \(j\ne i\) belong to the same connected component of \(\Lambda\setminus 0\), and \(\sum_{i=1}^n \delta_i\,e_i=\delta_0 1\) has wild representation type. Lugansk National Taras Shevchenko University 2018-05-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/995 Algebra and Discrete Mathematics; Vol 3, No 3 (2004) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/995/524 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-05-15T06:07:40Z
collection OJS
language English
topic idempotent
extended Dynkin diagram
representation
wild type
16G60; 15A21
46K10
46L05
spellingShingle idempotent
extended Dynkin diagram
representation
wild type
16G60; 15A21
46K10
46L05
Bondarenko, Vitalij M.
On wildness of idempotent generated algebras associated with extended Dynkin diagrams
topic_facet idempotent
extended Dynkin diagram
representation
wild type
16G60; 15A21
46K10
46L05
format Article
author Bondarenko, Vitalij M.
author_facet Bondarenko, Vitalij M.
author_sort Bondarenko, Vitalij M.
title On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_short On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_full On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_fullStr On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_full_unstemmed On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_sort on wildness of idempotent generated algebras associated with extended dynkin diagrams
description Let \(\Lambda\) denote an extended Dynkin diagram with vertex set \(\Lambda_0=\{0,1,\ldots, n\}\). For a vertex \(i\), denote by \(S(i)\) the set of vertices \(j\) such that there is an edge joining \(i\) and \(j\); one assumes  the diagram has a unique vertex \(p\), say \(p=0\), with \(|S(p)|=3\). Further, denote by \(\Lambda\setminus 0\) the full subgraph of \(\Lambda\) with  vertex set \(\Lambda_0\setminus\{0\}\). Let \(\Delta=(\delta_i\,|\,i\in \Lambda_0)\in \mathbb{Z}^{|\Lambda_0|}\) be an imaginary root of \(\Lambda\), and let \(k\) be a field of arbitrary characteristic (with unit element 1). We prove that if \(\Lambda\) is an extended Dynkin diagram of type \(\tilde{D_4}\), \(\tilde{E_6}\) or \(\tilde{E_7}\), then the \(k\)-algebra \({\cal Q}_k(\Lambda,\Delta)\) with generators  \(e_i\), \(i\in\Lambda_0\setminus\{0\}\), and relations  \(e_i^2=e_i\), \(e_ie_j=0\) if \(i\) and \(j\ne i\) belong to the same connected component of \(\Lambda\setminus 0\), and \(\sum_{i=1}^n \delta_i\,e_i=\delta_0 1\) has wild representation type.
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/995
work_keys_str_mv AT bondarenkovitalijm onwildnessofidempotentgeneratedalgebrasassociatedwithextendeddynkindiagrams
first_indexed 2025-07-17T10:31:49Z
last_indexed 2025-07-17T10:31:49Z
_version_ 1837890143296421888