Experimental Strength Analysis of Variable Stiffness Waffel-Grid Cylindrical Compartments. Part 2. Analysis Results

This paper presents the results of the experimental analysis of the stress-strain state of the variable stiffness tail compartment (section) designed by the Yuzhnoye Design Bureau. Equivalent compressive forces in the cross-sections of the tail compartment without the trans-port-erector support are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Degtyarev, Maksim A., Danchenko, Vitaliy G., Shapoval, Artem V., Avramov, Konstantin V.
Format: Artikel
Sprache:English
Russian
Veröffentlicht: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2019
Schlagworte:
Online Zugang:https://journals.uran.ua/jme/article/view/170927
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Energy Technologies & Resource Saving

Institution

Energy Technologies & Resource Saving
Beschreibung
Zusammenfassung:This paper presents the results of the experimental analysis of the stress-strain state of the variable stiffness tail compartment (section) designed by the Yuzhnoye Design Bureau. Equivalent compressive forces in the cross-sections of the tail compartment without the trans-port-erector support are analyzed. It is established that the calculated and experimental compressive forces are extremely close. Deformations in the tail compartment were measured where resistance strain gages were installed. For the measurement of displacements, displacement gauges were installed. The displacements were measured at six points. They were studied at maximum loading values corresponding to the fifth and sixth stages of loading. Axial movements are always negative, which indicates that the shell is compressed in the axial direction. The stress-strain state of the launch vehicle tail compartment was experi-mentally investigated. The circumferential normal stresses are several orders of magnitude smaller than the longitudinal ones. Therefore, the circumferential stresses were not investigated. The results of the ex-perimental studies were compared with the numerical simulation data in the NASTRAN software package. The purpose of the simulation was to confirm the workability of the tail compartment under the loads that occur during operation. In other words, the design must withstand the actual loads without destruction and the appearance of plastic deforma-tions. Special attention was paid to the zones that were directly under the brackets. The experimental results and numerical simulation data are close.