Нові підходи до оцінки стабільності карбенів

Carbenes are known to be highly reactive compounds, which can, in turn, spontaneously transform to dimers and products of rearrangements. Therefore, the question about the estimation of stability of carbenes is fundamental in the design of compounds for their subsequent synthesis and application.Aim...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:National University of Pharmacy
Дата:2019
Автори: Korotkikh, N. I., Rayenko, G. F., Saberov, V. Sh., Yenya, V. I., Shvaika, O. P.
Формат: Стаття
Мова:Ukrainian
Опубліковано: National University of Pharmacy 2019
Теми:
Онлайн доступ:https://ophcj.nuph.edu.ua/article/view/ophcj.19.183372
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

Репозиторії

Journal of Organic and Pharmaceutical Chemistry
Опис
Резюме:Carbenes are known to be highly reactive compounds, which can, in turn, spontaneously transform to dimers and products of rearrangements. Therefore, the question about the estimation of stability of carbenes is fundamental in the design of compounds for their subsequent synthesis and application.Aim. To consider the known methods for assessing the stability and stabilization of carbenes, first of all, created by the authors of the article, and show their possibilities in predicting the properties of carbenes.Materials and methods. The study was performed using the DFT method (B3LYP5, 6-311G**, RHF) to estimate the stabilization energies, and the DFT (B3LYP5, 6-31G, RHF) to obtain dimerization energies.Results and discussion. The ways of solving the problem of stability of carbenes by the methods of quantum chemistry are discussed, in particular the application of new criteria for the stabilization of cyclic compounds – energies of the general and cyclic stabilization, energies of non-aromatic conjugations. To assess the possibility of isolating compounds the study of standard dimerization enthalpies (according to the ESP electronic and steric parameter proposed) for different classes of heterocyclic carbenes has been performed taking into account conformational factors. The scale of substituent effects on the stability of carbenes has been developed. It has been shown that sterically shielding substituents cause not only the kinetic stabilization, but also the thermodynamic one. The skeletons of the molecules have been estimated for their degree of influence on the stability of the compounds.Conclusions. The parameters proposed for assessing the energies of the total and cyclic stabilization of carbenes, the dimerization energies of complex carbenes (electronic and steric parameter) allow identifying the most stable structures in the design of compounds for their subsequent synthesis and application.