Improving geometry and reliability multisupporting long tail compounds steam turbine blades
Selection of the most optimal design of low-pressure cylinder's steam pipe for high power steam turbines is not possible without usage of scientific achivements of the last decade. Different software systems can be used to optimize blades' geometry of low-pressure cylinder's steam pip...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України
2014
|
Теми: | |
Онлайн доступ: | https://journals.uran.ua/jme/article/view/27173 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Energy Technologies & Resource Saving |
Репозитарії
Energy Technologies & Resource SavingРезюме: | Selection of the most optimal design of low-pressure cylinder's steam pipe for high power steam turbines is not possible without usage of scientific achivements of the last decade. Different software systems can be used to optimize blades' geometry of low-pressure cylinder's steam pipe. Three dimensional models of steam flows are used for improvement of evaluation methods for biphasic medium flow in conditions of liquid medium formation and its interaction with blades. Modern evaluatinal methods allow to increase reliability of blades by means of erosional wearout minimization. Improved design of blade tails developed to optimally decrease strains is also important for reliability. Complex approach to design of low-pressure cylinder's steam pipe is useful for newly developed high power turbines as well as for upgrade of existing ones. This approach allows to design high quality blade tails which correspond to actual industry requirements to effectiveness and reliability.Selection of the most optimal design of low-pressure cylinder's steam pipe for high power steam turbines is not possible without usage of scientific achivements of the last decade. Different software systems can be used to optimize blades' geometry of low-pressure cylinder's steam pipe. Three dimensional models of steam flows are used for improvement of evaluation methods for biphasic medium flow in conditions of liquid medium formation and its interaction with blades. Modern evaluatinal methods allow to increase reliability of blades by means of erosional wearout minimization. Improved design of blade tails developed to optimally decrease strains is also important for reliability.Complex approach to design of low-pressure cylinder's steam pipe is useful for newly developed high power turbines as well as for upgrade of existing ones. This approach allows to design high quality blade tails which correspond to actual industry requirements to effectiveness and reliability. |
---|