Bending of Plates with Complex Shape Made from Materials that Differently Resist to Tension and Compression

A new numerical-analytical method for solving physically nonlinear bending problems of thin plates with complex shape made from materials that differently resist to tension and compression is developed. The uninterrupted parameter continuation method is used to formulate and linearize the problem of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автор: Склепус, C. М.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2023
Онлайн доступ:https://journals.uran.ua/jme/article/view/283556
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Energy Technologies & Resource Saving

Репозитарії

Energy Technologies & Resource Saving
Опис
Резюме:A new numerical-analytical method for solving physically nonlinear bending problems of thin plates with complex shape made from materials that differently resist to tension and compression is developed. The uninterrupted parameter continuation method is used to formulate and linearize the problem of physically nonlinear bending. For the linearized problem, a functional in the Lagrange form, given on the kinematically possible displacement rates, is constructed. The main unknown problems (displacements, strains, stresses) were found from the solution of the initial problem, which was solved by the Runge-Kutta-Merson method with automatic step selection, by the parameter related to the load. The initial conditions are found from the solution of the problem of linear elastic deformation. The right-hand sides of the differential equations at fixed values of the load parameter corresponding to the Runge-Kutta-Merson scheme are found from the solution of the variational problem for the functional in the Lagrange form. Variational problems are solved using the Ritz method in combination with the R-function method, which allows to submit an approximate solution in the form of a formula – a solution structure that exactly satisfies the boundary conditions and is invariant with respect to the shape of the domain where the approximate solution is sought. The test problem for the nonlinear elastic bending of a square hinged plate is solved. Satisfactory agreement with the three-dimensional solution is obtained. The bending problem of the plate of complex shape with combined fixation conditions is solved. The influence of the geometric shape and fixation conditions on the stress-strain state is studied. It is shown that failure to take into account the different behavior of the material under tensile and compression can lead to significant errors in the calculations of the stress-strain state parameters.