Математичне моделювання розподілу корисних копалин між системою нерегулярно розміщених похилих свердловин методами глобальної інтерлінації функцій

Building methods of three-demensional minerals distribution model on the base of minerals distribution at the every value of given system of inclined boreholes information and three variable functions interlineations methods are proposed in the article. Building methods of three variable functions i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Литвин, О. О., Штепа, Н. І., Кулик, C. І., Чорна, О. С.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2013
Теми:
Онлайн доступ:https://journals.uran.ua/jme/article/view/43796
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Energy Technologies & Resource Saving

Репозитарії

Energy Technologies & Resource Saving
Опис
Резюме:Building methods of three-demensional minerals distribution model on the base of minerals distribution at the every value of given system of inclined boreholes information and three variable functions interlineations methods are proposed in the article. Building methods of three variable functions interlineations formulae with using of Donald Shepard and Oleg N. Litvin global interpolation formulae generalization are presented. Properties of built math models and perspectives of their using for mineral exploration are investigated. This building method of math models of three-dimensional distribution of minerals between inclined boreholes allows, after appropriate generalization, build math models of earth crust structure with using of all core components of inclined boreholes, which will lead to effective mineral exploration and prospecting methods creation. Using information for such math modeling type is more accessible and easy in comparison with information getting by seismic tomography methods. At the same time it allows present mineral distribution at deposit place in the form of three variable single functions. It open ups possibilities for exploration of new prospecting methods.